

É FILTRANDO HOJE **QUE PRESERVAMOS**

O AMANHÃ.

A construção de um futuro melhor passa pelas nossas mãos. A Renner Têxtil tem consciência de sua missão e investe em pesquisa e novas tecnologias para criar produtos úteis. A satisfação dos clientes com maior produtividade e rentabilidade precisa estar acompanhada da certeza de que o meio ambiente vai ser preservado. É por isso que a Renner Têxtil está sempre se superando na busca de soluções inovadoras.

Nossos produtos

- 1 Sonda de monitoramento de emissão de particulados.
- 2 Elementos filtrantes, mangas convencionais para alta temperatura, cartuchos e mangas plissadas.
- 3 Tubulação.
- 4 Tubo de limpeza.
- 5 Sistema de limpeza por válvulas solenoide.
- 6 Tanques de ar comprimido.

- 8 Venturi EasyAdapt.
- inox.
- 11 Economizador de ar Ecomatic (ECO).

empresa

sustentável

MANGAS

Mangas filtrantes

- Desenvolvidas para cada cliente de acordo com o seu processo de filtração.
- O não tecido agulhado utiliza a tecnologia BWF Envirotech GMBH.
- Diferentes tipos de matérias-primas: Poliéster, Polipropileno, Nomex, Acrílico, Dolanit, P84, PROCON, Teflon, Fibra de Aço-Inox, Fibra de Vidro, Fibra Cerâmica.
- Tratamentos químicos que melhoram a filtração e aumentam a vida útil do elemento filtrante.

Mangas filtrantes para alta temperatura

		PI/PI	Vetrocore 75	Vetrocore 100	GL 7005 e GL 651T	TFL/PTFE 712 MPS Vetro	PTFE/ PTFE 704 MPS CS 18	B/B 1852 Pyrotex	(Cerâmica)
Temperatura °C (picos)		240 250 (s) 250 280	250	260	260	250	400	850	
			280	280	280	280	280	450	1000
Material da fibra		PI	PTFE+GL	PTFE		PTFE+GL	PTFE	AÇO INOX	KE
Material da tela		PI	GL	GL	GL	PTFE	PTFE	AÇO INOX	
Resistências	Tração	<u></u>	•	<u>•</u>	•	<u> </u>	<u> </u>	•	•
	Flexão	•	<u> </u>	<u> </u>	2		•	•	•
	Abrasão	<u> </u>	<u> </u>	9	<u> </u>	9	<u>e</u>	•	•
	Hidrólise (H ₂ 0)	<u> </u>	<u>•</u>	•	<u>•</u>	©	<u>•</u>	•	•
esist	Sulfonação (SO ₂ / H ₂ SO ₄)	<u></u>	<u>•</u>	•	<u></u>	.	•	<u></u>	•
	Nitração (NO ₂)	<u></u>	•	•	<u></u>	•	•	•	•
	Oxidação (0 ₂)	<u></u>	<u>•</u>	•	•	•	<u>•</u>	•	•
	Legendas: BOM	D RAZOÁV	EL 🕛 RUIM 🥨		a Aromática (P8 etrafluoretileno e vidro	(Teflon) B:	FE + GL: Politetra Aço Inox : Čerâmica	fluoretileno co	m fibra de vidi

Alta temperatura (220° a 1000°C)

- Gases de fornos, calcinadores, caldeiras ou incineradores.
- Plena resistência química a gases ácidos e oxidantes.

Aplicações

 Indústria de cimento, vidro, cerâmica, fundição, alumínio, incineradores de lixo e geração de energia.

Alta performance de filtração (1 a 5 mg/Nm³)

1. Tecnologia de membranas PTFE

- Filtração superficial (maior vida útil).
- Alta antiaderência (facilidade de limpeza).
- Menor consumo de ar comprimido.
- Retenção de partículas a partir de 1µm.

2. Tecnologia MPS (Micro Poro Size)

- Alta superfície efetiva de filtração.
- Excelente resistência à abrasão.
- Retenção de partículas a partir de 1µm.
- Emissão menor que 1 mg/Nm3.

MANGA CERÂMICA RENNER PYROTEX PARA FILTRAÇÃO DE DIOXINAS E FURANOS

Manga cerâmica é um elemento filtrante de fibra catalítica de silicato resistente a altas temperaturas (até 1.000°C), para ambientes ácidos e/ ou alcalinos, com elevado índice de SOx ou NOx, gerados pelos mais diversos processos químicos, filtrando Dioxinas e Furanos.

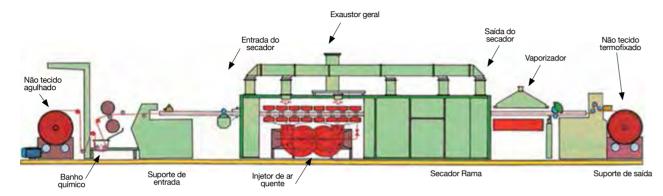
A fibra de silicato é completamente imune aos danos provocados por choques térmicos. Assim, elimina os períodos de pré-aquecimentos e/ou resfriamentos, aumentando o ganho de produção e minimizando custos com combustível.

Este produto foi criado para atender a indústrias que necessitam alto grau de pureza em suas correntes gasosas, sem ser necessária a utilização de purificadores líquidos, ou onde a instalação de um trocador de calor, que afetaria o rendimento térmico, é muito dispendiosa.

Vantagens técnicas

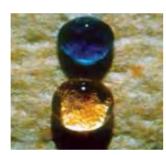
- Não sensível a faíscas.
- Não inflamável.
- Excelente resistência química.
- Superfície orientada para filtração.
- Não necessita de gaiolas metálicas.
- Alta permeabilidade ao ar.
- Baixas taxas de emissão.
- Alta porosidade.
- Baixo peso.

Mangas e cartuchos plissados


	Diâmetros	Altura mm	Área m²	Fixação	Materiais
	120mm	1020 ou 1065 2040 ou 2065	1,2 2,5	Por cima (TOP)	PE, PE-CS17, PE-AL, PE. PE-Membrana.
Mangas Plissadas	150mm	1020 ou 1065 2040 ou 2065	1,9 3,9	ou por baixo (BOTTOM)	NO, NO-Membrana, PPS, PPS-Membrana
Cartuchos	325mm	915 9 a 1000 10 a 1200 12 a	6 a 13 9 a 18	Tri-Lungs (aberto-fechado) Tipo 00 (aberto-aberto) Tipo 00 (aberto-aberto)	PE, PE-CS17, PE-AL, PE-Membrana, CE-PE, CE
our montos	570mm		10 a 20 12 a 24 8 a 12		

TRATAMENTOS QUÍMICOS

Tratamento antiaderente


Consiste na impermeabilização do não tecido com resinas especiais à base de Politetrafluoretileno (Teflon), que repelem pósaglomerantes úmidos ou gordurosos. As resinas são adicionadas por imersão da manta em banho com posterior ancoragem pelo processo de polimerização em secador Rama.

Termofixação e polimerização de resinas em rama pela secagem convectiva

Tabela 1 – Critérios de seleção dos tratamentos antiaderentes Renner

Tratamento Antiaderente	Resina PTFE (%)	Grau de Antiaderência	Higroscopicidade do pó	Frequência de Considerações
912	0,50	Baixa	Baixa	Baixa
CS29	0,95	Média	Média	Baixa
CS17	1,50	Elevada	Média	Média
CS17/2	3,00	Muito elevada	Elevada	Elevada
CS42	6,00	Muito elevada	Muito elevada	Muito elevada

Repelência a umidade

Impermeabilização com Teflon

OUTROS TRATAMENTOS

Tabela 2 – Outros tipos de tratamentos

Nome	Fabricação de Não tecidos	Detalhes Técnicos de Aplicação
930	Polimerização total com RESINA	LEVE-ANTIABRASIVO
950	Polimerização total com RESINA	ANTIABRASIVO
970	Polimerização total com RESINA	ULTRA-ANTIABRASIVO
Egg-Shell	Termoplastificação por calandragem	Retenção de partículas de baixa granulometria e/ou abrasivos
Opticlean	Película ACRÍLICA MICROPOROSA	Retenção de partículas de baixa granulometria
AES	Mesclagem de fibra de aço inox às fibras	Antiestático, qualquer tipo de pó
Epitropic	Mesclagem de fibras sintéticas	Antiestático, pós pouco condutores
Cordoalha	Costurada ao longo da manga	Antiestático, pós metálicos condutores e não corrosivos
Fireguard	Polimerização total com RESINA	ANTICHAMA
Sanitazed	Polimerização total com RESINA	Bacteriostático e fungostático (ALIMENTOS)

Tipos de tratamento

Antiabrasivo,
Termoplastificação,
Antiestático, Antichama
e Bacteriostático.

GAIOLAS

Gaiolas e venturis

- Todos os tipos de venturis e gaiolas (cilíndricas ou elípticas).
- Gaiolas gavalnizadas, com pintura epóxi, ou em aço inox (304L ou 316L).
- Disponíveis com fecho rápido ou parafusável.

Fabricação sustentável: as gaiolas com pintura époxi retardam a oxidação e o processo de fabricação é ecologicamente sustentável, uma vez que usa 90% menos de água do que os processos tradicionais.

Vantagens

- Fabricação sem agressão ao meio ambiente.
- Resistência química à umidade, ácidos e abrasivos.
- Pintura antitrinca.
- Melhor performance do meio filtrante.

EasyAdapt

Novo sistema de gaiolas

As gaiolas EasyAdapt, com venturi e colarinho encaixáveis no corpo (exclusivo sistema para mangas com anel duplo), representam inovação e praticidade em sistemas de filtração industrial. Possibilidade de aquisição de colarinhos ou venturis avulsos.

Materiais	SAE 1020, AISI 304, AISI 316L, Alumínio (exceto arames)	
Para furos de espelho	Ø 133 a 165mm	
Acabamento	Galvanizado ou epóxi	
Espessura	1,3mm (chapa #18)	
Arames	3,2mm ou 4mm	

Código	Temperatura	Descrição
CE	70 °C	Celulose
PE-CE	20°08	Poliéster + Celulose
PE	135 ℃	Poliéster
PE-CS17	135 ℃	Poliéster Hidrorrepelente
PE-AL	135 ℃	Poliéster Antiestático
PE MEMBRANA	135 °C	Poliéster com Membrana
NO	190 °C	Poliamida Aromática (Nomex ou Conex)
PPS	190 °C	Polifenilsulfeto (Ryton ou Procon)
PI	240 °C	Poliimida Aromática (P84)

Tipo de pintura	Limite(°C)
Linha Epóxi	140
Linha Primer	200
Linha Ecofil	260

ELETRÔNICOS

Filtro de manga (limpeza offline)

Pilotbox

Ecomatic (ECO)

Ecoserial 2

Economizador de ar comprimido que limpa conforme a necessidade, através do controle da pressão ou do tempo. Detecta fileiras de mangas com eventual

Filtro de manga (limpeza online)

Controladores de **filtros** Indicador e transmissor (4-20mA) de pressão na faixa de -99 a + 999 mmCA Relé de alarme alto de pressão diferencia Limpeza por demanda de tempo Função economizadora (limpeza por demanda de pressão) 0 0 0 Função limpeza pós-parada Detecção de solenóide queimado Detecção de manga furada (via sinal da sonda para entrada tribo) E E P P Acionamento das válvulas: E = Elétrico / P = Pneumático Quantidade de fios elétricos para conexão de X válvulas x+1 x+1 2 2 Quantidade de válvulas comandadas a) 6.12.20.32.64.96 válvulas a) a) b) b) b) 4 a 204 através da conexão de módulos de solenoides entre si (Pilot Box) cada um com 4 ou 6 saídas Destinado para limpeza: online e offline on on on on/off Controla os dumpers de isolamento das câmeras em limpeza offline Registro de tempo desativado para cálculo da economia de ar 0 0 0

MEDIDORES PARA FILTROS, **DUTOS E CHAMINÉS**

Medição da emissão de particulados

Sistema de Monitoramento de Materiais Particulados com Tecnologia Eletrodinâmica Renner

A tecnologia

A Tecnologia Eletrodinâmica é ideal para controle ambiental, processos e gerenciamento de filtros de manga. A sonda instalada no duto ou chaminé capta a carga eletrostática das partículas que passam ao seu redor, criando o sinal de medição através da reação de indução de mudança na frequência, que é diretamente proporcional à concentração das partículas.

Principais benefícios

- Reguer baixa manutenção e tem baixo custo de operação.
- Medição contínua a cada 0,01mg/m3.
- Controle do desempenho de filtros de manga, que permite detectar eventuais mangas furadas.

Pressão (Manômetro)

Modelo DPF20 e DPF-REG-20 (Fixo)

- Manômetro indicador e transmissor de pressão diferencial ou estática (sinal 4-20mA).
- Escala de -0,99 a +9,99 mmCA (TIPO D).
- Escala de -9,9 a +99,9 mmCA (TIPO C).
- Escala de -99 a +999 mmCA (TIPO B).
- Escala de -999 a +9.999 mmCA (TIPO A).
- Proteção Ip65.

Indicado para sistema de automação em

- Filtros de manga.
- Trocadores de calor.
- Dumpers de ar-falso.

Modelo PDP 2 (Portátil)

- Manômetro digital de pressão diferencial de alta precisão.
- Equipamento compacto de mão.

Indicado na medição de pressão estática ou diferencial em

- Plantas de ventilação.
- Regulagem de dumpers e coifas.
- Obstrução em filtros de manga.
- Perda de carga em ciclones, ventiladores, etc.
- Escala de -10Kpa a +20Kpa (-1.021 a +2.041
- Dimensões: 155x105x31mm (255 gramas).

Modelo GC (Temporizador Cíclico)

Os temporizadores cíclicos têm, como princípio de funcionamento, o acionamento de válvulas solenoides. A partir de um intervalo de tempo pré-determinado pelo usuário, pode-se ler, em seu display, o diferencial de pressão no filtro de

Vazão, pressão e velocidade

Modelo MVP 2 (Fixo)

Medidor de vazão, velocidade e pressão. Indica o valor de vazão, velocidade e pressão e transmite qualquer um desses valores através de sinal 4-20mA para monitoramento remoto.

PRESSÃO: -9,9mmCA a +99,9mmCA.

VELOCIDADE: 0-52 m/s.

VAZÃO: 0 a 999.000 m³/h (3 escalas - fator ajustado

por mil).

A pressão pode ser indicada em mmCA. Pascal, MBar ou Kpa.

Possui 3 relés programáveis digitalmente conforme o set-point escolhido:

• Mínimo, 1º máximo e 2º máximo para cargas resistivas de até 3A por 110Vac.

Proteção Ip65

Tubo de Pitot tipo L ou S (opcional)

(0,5m -1,0m -1,5m -2m)

Modelo PFV 2 (Portátil)

Medidor de vazão, velocidade e pressão. PRESSÃO: -999Pa a 2000Pa (-101,9 a +204,1mmCa).

VELOCIDADE: 0-52 m/s.

VAZÃO: 0 a 999.000 m³/h (fator ajustado por mil).

DIMENSÕES: 155x105x31mm (255 gramas).

Tubo de Pitot tipo L ou S (opcional) (0,5m -1,0m -1,5m -2,0m)

VÁLVULAS DIAFRAGMA E PASSA PAREDE

- Válvulas de alta vazão para filtros de mangas.
- Válvulas de duplo estágio.
- Acionamento por solenóide (integral) ou ar comprimido (remoto).
- Conexão rosca BSP, engate rápido e flangeado (imersão e flat).
- Alimentação 24Vdc, 24 Vac, 110 Vac e 220 Vac, com acionamento por tinners, CLP ou Economizadores.
- À prova de explosão (opcional).
- Passa parede e válvulas de engate com vedação em BUNA-N (até 100°C) ou Vitron (até 200°C).

Tipo imersão 1", 1 ½" e 2' (acionamento integral)

Tipo flat – 2 ½" e 3" (acionamento remoto

Passa parede



Válvula tipo rosca 1 ½" e 2" (diafragma duplo) ¾" e 1" (diafragma simples)

EFICIÊNCIA ENERGÉTICA APLICADA EM FILTROS MANGA

O consumo de energia representa uma parcela importante nos custos de produção das plantas industriais. Em razão disso, a Renner Têxtil, em parceria com a WEG Equipamentos Elétricos, desenvolveu projeto para redução do consumo de energia elétrica no sistema de exaustão, através da aplicação de um motor de imãs permanentes acionado por inversor de frequência, utilizando um regulador eletrônico de pressão para o monitoramento do processo de filtração.

A mudança de equipamentos com o motor WMAGNET (de rendimento 2,7% superior ao motor Standard) e o controlador DPF-REG-20 propiciou uma redução de 53,7% no consumo de energia elétrica.

TANQUES DE AR COMPRIMIDO

Tanques de ar com válvulas integradas de alto rendimento. São fornecidos já montados com válvulas, controladores e Certificado de Estangueidade no padrão CE (Certificação Europeia).

Especificações para tanque sem acessórios

Especificação A • Diâmetro do tanque: Tanque 6", 8", 10", 12", 14", 16", 18", 20"

Tanque 14" - Conexão rosca 2'

Especificação B • Método de conexão: Conexão rosca, engate, imersão, flat

Tanque 10" - Conexão engate 1 1/2"

Especificações para tanque com acessórios

Especificação C • Diâmetro da válvula: 3/4 ". 1". 1 ½". 2". 2 ½" 3"

Tanque 18" - Conexão imersão 1 1/2" - Integral 110 Vac - C/ acessórios (válvulas)

Especificação D • Método de acionamento: Integral (com bobina) / Remoto (com Pilotbox)

Especificação E • Voltagem de acionamento: 24 Vdc, 24 Vac, 110 Vac, 220 Vac

Tanque 16" - Conexão imersão 1" - Remoto 220 Vac - C/ acessórios (válvula e pilotbox)

VANTAGENS

- A mudança de equipamentos com o motor **WMAGNET** (cujo rendimento de 95,2% é 2,7% superior ao motor Standard) e com o controlador **DPF-REG-20** propiciou uma reducão de 53,7% no consumo de energia elétrica.
- A característica ímpar encontrada na linha **WMAGNET**, que mantém o torque constante em toda faixa de rotação, possibilita o controle de velocidade, imprescindível para aplicações em sistemas de exaustão, caso ocorra perda de carga nos mesmos.
- O controle por equipamento DPF-REG-20, com rápida resposta e ajuste das pressões no processo, demonstrou uma eficiência invejável para o novo lançamento da Renner Têxtil, desenvolvido especificamente para esse tipo de motor.
- Além da redução do consumo de energia, obtém-se também ganhos com o aumento da vida útil das mangas, entre 2 a 4 meses, e a redução de ar comprimido para limpeza das mangas.

