

SSAB en Resumen

7 5 mil millones USD

Venta anual en 2017

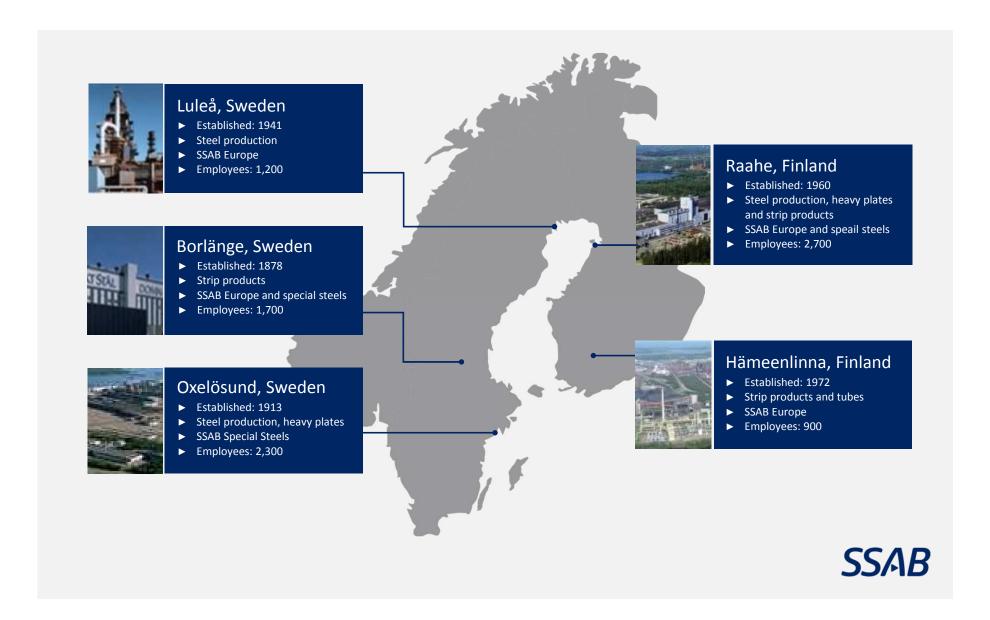
Produciendo acero desde

1878

Capacidad anual de producción de acero:

8.8 Millones Toneladas

Nuestros negócios:


SSAB Special Steels, SSAB Europe, SSAB Americas, Tibnor, Ruukki Construction

Empresa Global con Presencia Local

Unidades de producción - Europa

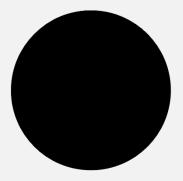
Unidades de Producción - EE.UU.

Ofrecemos más que acero

PRODUCTO DE ALTA CALIDAD

Composicion química limpia, garantías de tolerancia de espesor, garantías de tenacidad, consistencia dentro de las placas y entre ellas, material apto para talleres, etc.

SERVICIO COMERCIAL

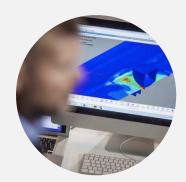

Acciones locales, contactos locales a su servicio, soluciones a medida, marcas fuertes, programas de marca, soporte de marketing, etc.

SOPORTE TECNICO

Expertos en soldadura, expertos en diseño, expertos en conformación, expertos en tecnología de desgaste, soporte de desarrollo de productos, soporte de eficiencia de producción, manuales, cálculo de optimización, etc.

Paquete Completo de Servicio

SSAB Knowledge Service Center para soporte de aplicaciones


SSAB Shape para producción de piezas para OEM

Centros Hardox Wearparts para solución en desgaste

Estoque y vendas locales

Soporte técnico amplio

Programa de desarrollo conjunto de clientes

INICIO EN HOY

MÁS DE CENTROS

EN MÁS DE

Programa de pacería da SSAB para suministro de piezas y soluciones en desgaste

▶ Soporte a los clientes con la mejor opción de piezas y servicios de desgaste

▶Trabajando con la plancha de desgaste Hardox®, el acero de SSAB líder mundial en desgaste

SSAB

Una família conectada para encuentrar siempre la mejor solucion para los clientes

La Fuerza de Nuestros Aceros

The highstrength, highperformance steel

The renowned hard and tough steel for aggressive environments

Safety for automotive

The premium engineering and tool steel

Hardest steel for maximum protection

Ramor®

For harsh weather and greener living

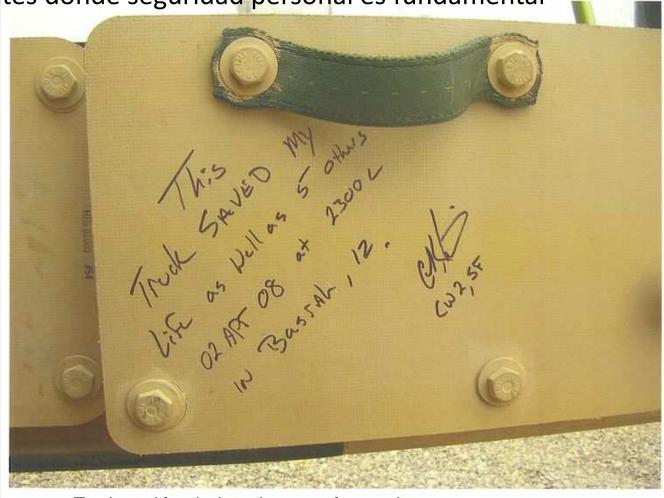
DOMEX / BORON FORM / WEATHERING LASER PLUS

Optimized families

Carro blindado para transporte de valores y personas

Policía entrando en áreas de riesgo

Explotación de bombas en áreas de guerras



Explotación de bombas en áreas de guerras

Explotación de bombas en áreas de guerras

Requerimientos de Planchas Ramor/Armox

Protección contra penetración

- Dureza y tenacidad

Protección contra explotación

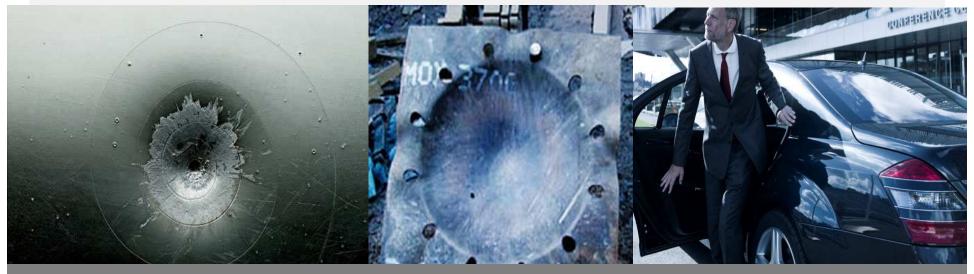
- Tenacidad y resistencia

SSAB

SSAB Ballistic Steels

SSAB fabrica una amplia gama de aceros para aplicación balística

Ramor Protection Plate


SSAB SSAB

Ventajas de los Aceros SSAB

- La gama de productos más completa
- Mayor dureza y tenacidad actualmente disponible
- Propiedades balísticas y explosivas garantizadas.
- Excelentes propiedades de taller
- Propiedades consistentes ofrecen mejores soluciones de diseño.

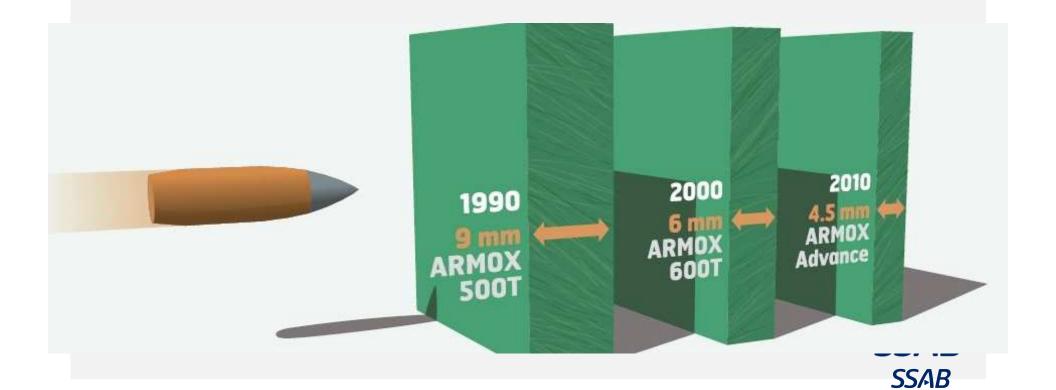
SOLUCIONES MÁS LIVIANAS, MISMA PROTECÍON

Widest product range, we cover it all Every application, every design has its own challenges and unique set of critical design requirements

Armox product range	Thickness (mm)	Hardness (HBW/HRC)	Yield Strength (Mpa)	Tensile Strength (Mpa)	Elongation (A5/A50 %)	Impact toughness (J)*
Armox 370T Class 1	3-20	380-430	Min. 1000	1150-1350	Min. 10 / Min. 12	Min. 20
Armox 370T Class 1	20-40	340-390	Min. 900	1050-1250	Min. 11 / Min. 13	Min. 25
Armox 370T Class 1	40-80	300-350	Min. 850	950-1150	Min. 12 / Min. 14	Min. 30
Armox 370T Class 2	3-140	280-330	Min. 800	900-100	Min. 13 / Min. 15	Min. 40
Armox 440T	4-30	420-480	Min. 1100	1250-1550	Min. 10 / Min. 12	Min. 35. Typical 75
Armox 500T	3-140	480-540	Min. 1250	1470-1750	Min. 8 / Min. 10	Min. 25. typical 45
Armox 600T	4-20	570-640	Typical 1500	Typical 2000	Typical 7 /	Min. 12. Typical 25
Armox Advance	5-7	/58-63				Typical 10

Ramor product range	Thickness (mm)	Hardness (HBW/HRC)	Yield Strength (Mpa)	Tensile Strength (Mpa)	Elongation (A5/A50 %)	Impact toughness (J)*
Ramor 400	3-16	360-450	1100	1300	8	20 J
Ramor 450	8-16	420-480	1100	1280	9	35 J
Ramor 500	2.2-16	480-560	1450	1700	7	20 J
Ramor 550	3-16	540-600	1550	1850	7	16 J

^{*} Charpy, V -40C, Average of three tests. Transverse to rolling direction.


Consistencia

- Las propiedades uniformes en toda la placa, y también de placa a placa, son extremadamente importantes para los clientes de acero de protección SSAB
- Lo que se prueba también está garantizado: dureza, resistencia al impacto, rendimiento y resistencia a la tracción
- Certificado por los ministerios de defensa.

Beneficios del aumento de grado ("upgrading")

• Misma protección usando chapas más delgadas y livianas

Ramor – Advanced protection steels

Ramor 400

 Steel for protection against high pressures caused by explosions and blasts

Ramor 450

- Mineshield and vehicle floor applications
- Excellent workshop properties

Ramor 500

- ► For all ballistic protection purposes ."Multisteel"
- Very workshop friendly in its hardness class

Ramor 550

- For ballistic protection
- Advanced ultra high hardness steel for weight critical applications with workshop properties of 500HB steel

Delivery condition DQ

Ramor - Workshop friendly

Feature		Ramor 400 Ramor 450		Ramor 500	Ramor 550
	Cutting	All common methods	All common methods	Water jet, Laser, plasma and flame cutting	Water jet, Laser, or plasma
Workshop properties	Drilling	Reinforced HSS or ordinary HSS with limited life	Reinforced HSS or ordinary HSS with limited life	Solid carbide or reinforced HSS	Only solid carbide
	Threading	Possible with good quality taps	Possible with good quality taps	Milling or with good quality threading taps (cutting type)	Milling only
	Bending	5 x t	4 x t	6 x t	6 x t
	Welding	Austenite or soft ferritic consumables. Preheating t > 25 mm	Austenite consumables recommended	Austenite, high strength- or soft ferritic consumables. Preheating t > 10 mm	Austenite consumables recommended

PROTECTION PLATE

Ramor Protection Plate

Applicaciones

Dartnerchin hatween Centigen and SCAR

SSAB

MOWAG EAGLE IV

OTOKAR COBRA

SSAB

RIVA

BAE RG33

RG 31 having suffered a mine blast

PANHARD PVP

BAE TACTICA

PATRIA AMV

STEYR PANDUR II

MOWAG PIRANHA IV

Taiwan – Snow Leopard

NEXTER VBCI

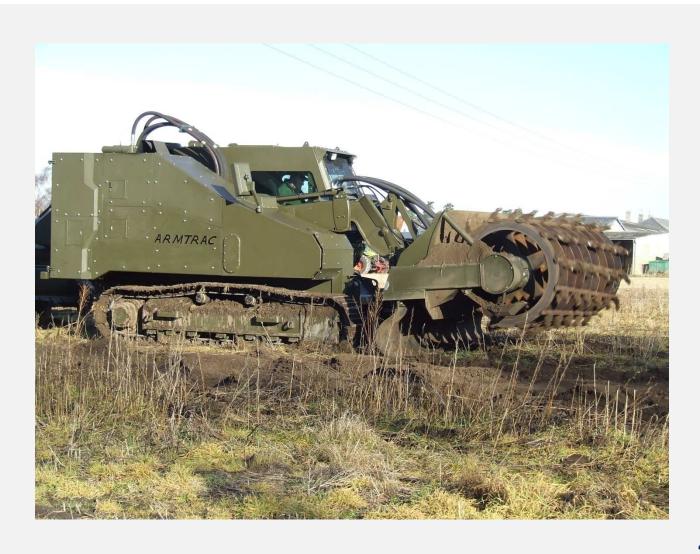
KMW BOXER

HÄGGLUNDS BV210

HÄGGLUNDS CV90

KMW PUMA

LEOPARD 2 (Greece)



LEOPARD 2 (Germany)

MINE CLEARING

MINE CLEARING

DORBYL CHUBBY

PROCESAMIENTO

CORTE

Corte

Aspectos generales acerca del corte de los aceros Armox y Ramor

Pueden ser cortados por cualquier método de corte convencional:

Oxi corte, Plasma, Laser, Jato de agua, Disco abrasivo, etc.

Métodos de Corte Convencionales

Tabela 1 Aspectos gerais para diferentes métodos de corte

Método de corte	Velocidade de corte	Abertura	ZAT	Tolerância ±0,2 mm	
Jato de água abrasiva	8-150 mm/min	1–3 mm	0 mm		
Corte a Laser	600-2200 mm/min	<1 mm	0,4-3 mm	±0,2 mm	
Plasma	1200-6000 mm/min	2–4 mm	2–5 mm	±1,0 mm	
Oxi-corte 150-700 mm/min		2–5 mm	4–10 mm	±2,0 mm	

Corte – Métodos que pueden ser aplicados

Abrasive waterjet

CHORRO DE AGUA ABRASIVO

Este proceso es válido para todas las placas Armox y es, además, el método preferido por la ausencia de zonas afectadas por el calor (HAZ), lo que elimina el riesgo de que se produzcan grietas.

Laser cutting

CORTE POR LÁSER

Este proceso puede utilizarse para cortar chapas de Armox Advanced y Armox 600T de hasta aprox. 20 mm de espesor. Genera un ancho de corte estrecho, generalmente inferior a 1 mm, y una zona afectada por el calor (HAZ) generalmente inferior a 3 mm.

Corte – Métodos que pueden ser aplicados

Plasma cutting

CORTE POR PLASMA

Este proceso puede utilizarse para cortar placas de Armox Advanced y Armox 600T de hasta aprox. 25 mm de espesor. Genera un ancho de corte generalmente de 3-4 mm y una zona afectada por el calor (HAZ) de hasta 5 mm. El corte por plasma puede realizarse bajo el agua, ya que minimiza el alcance de la distorsión y genera una HAZ mucho más pequeña.

Gas cutting

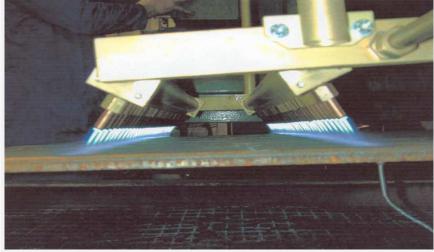
OXICORTE

Este proceso puede utilizarse con placas Armox de hasta 60 mm de espesor. Consultar la información detallada que se proporciona en la Tabla 6. Genera un ancho de corte de 2-5 mm y una zona afectada por el calor (HAZ) de 4-10 mm de anchura.

Los desafíos asociados al Corte son:

Fisura en la Borda cortada Queda de dureza en la ZTA Small cracks behind the cut edge HARDNESS Distance from cut edge

Métodos para evitar fisura en la borda cortada


- Precalientamento
- Reducción de la velocidad de corte
- Resfriamiento lento
- Poscalientamiento (en casos específicos)

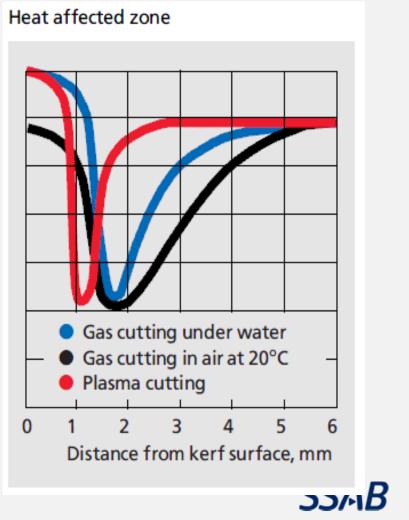
Precalientamiento

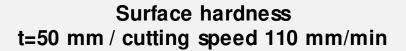
Ancho mín. de 100mm em las bordas

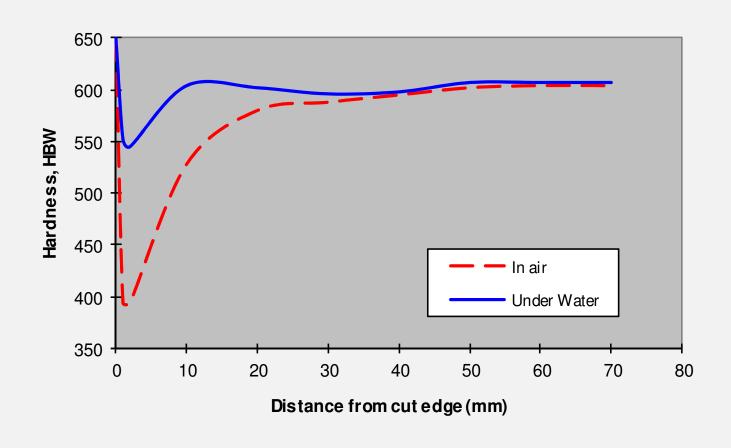
Evitar cortes que dejen cantos retos

(Válido para todos los métodos de corte térmico)

Los cantos retos funcionan como concentradores de tensión con alto stress residual que facilita la propagación de fisuras por hidrogeno.

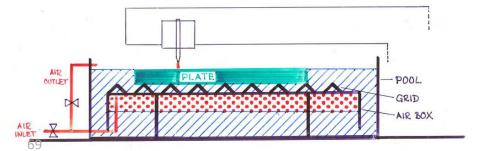



Zona Térmicamente Afectada


El ancho de la zona afectada depende:

- Corte al aire o en agua
- Proceso de corte
- Velocidad de corte
- > Temperatura de precalientamiento
- Dimensiones de las piezas cortadas

Zona Térmicamente Afectada


Revenimento de peças pequenas

Mesa para corte submerso

Se utiliza un depósito de agua. El agua se filtra y se bombea de nuevo a la mesa.

Ventajas del corte sumergido

- > Zona térmica afectada menor
- No hay pérdida de dureza en piezas pequeñas
- Menos distorsiones en las piezas cortadas
- > Las piezas son enfriadas directamente
- > Sin humo y polvo
- Reducción del nivel de ruido

Cutting under water

Cutting in air

Corte – Métodos que pueden ser aplicados

Armox 370T CL1 & CL2	Armox 440	Armox 500T	Armox 600T	Armox Advance	Método de corte recomendado
Hasta 15 mm	Hasta 25 mm	Hasta 15 mm	Hasta 10 mm	5	Chorro de agua abrasivoPlasmaLáserDisco abrasivo
15–25 mm	25–30 mm	15–25 mm	10–20 mm	-	 Chorro de agua abrasivo Láser Oxicorte a velocidad reducida Oxicorte más precalentamiento a 170 ffl 30°C Disco abrasivo
40–60 mm	25-30 mm	40–60 mm	<u>e</u>	÷	 Chorro de agua abrasivo Oxicorte más precalentamiento a 170 ffl 30°C más mantenimiento a una temperatura de 160 ffl 40°C durante cuatro horas Disco abrasivo
Mayor de 60 mm	÷	Mayor de 60 mm	÷	Hasta 12 mm	Chorro de agua abrasivo Disco abrasivo

SOLDADURA

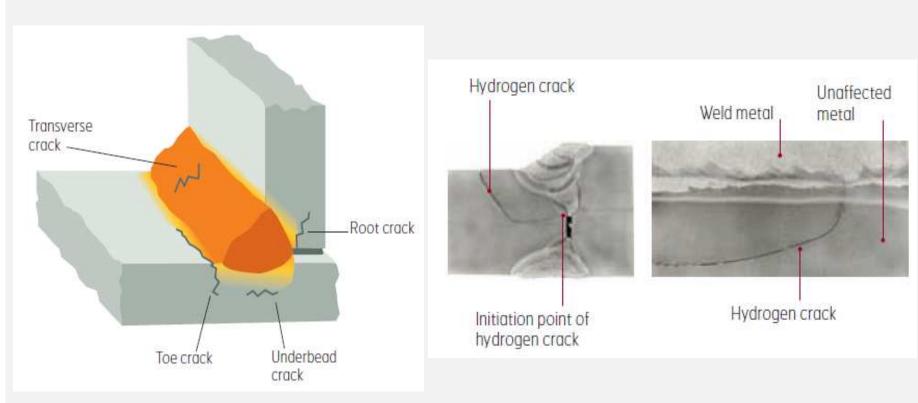
Soldadura

Aspectos generales sobre la soldadura de los aceros Armox

- Soldadura por cualquier método de soldadura común
- > Pueden ser soldados con cualquier otro acero soldable
- Correcto procedimiento de soldadura
- Correcto consumible de soldadura

Carbón equivalente

El valor del carbono equivalente al acero indica su sensibilidad a las fisuras por hidrógeno. Un valor bajo del carbono equivalente normalmente indica un riesgo reducido para las fisuras.


Calidad del acero	Rango de espesores	CET¹ [%]	CEV1 [%]
Armox 370T CL1 & CL2	3–100 mm	0.46-0.50	0.67-0.73
Armox 440T	4–80 mm	0.39-0.42	0.67-0.73
Armox 500T	3–80 mm	0.46-0.502	0.67-0.73 ²
Armox 600T	4-20 mm	0.58-0.61	0.83-0.86
Armox Advance	4–12 mm	0.64-0.68	0.89-0.96

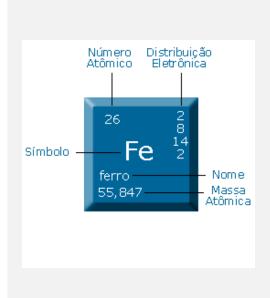
CET= C+
$$\frac{(Mn + Mo)}{10} + \frac{(Cr+Cu)}{20} + \frac{Ni}{40}$$

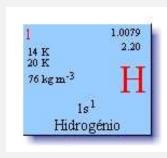
CEV= C+
$$\frac{Mn + (Mo+Cr+V) + (Ni+Cu)}{5}$$

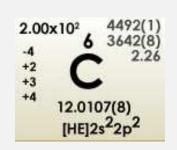
Fisuras por Hidrogeno (fisura a frio)

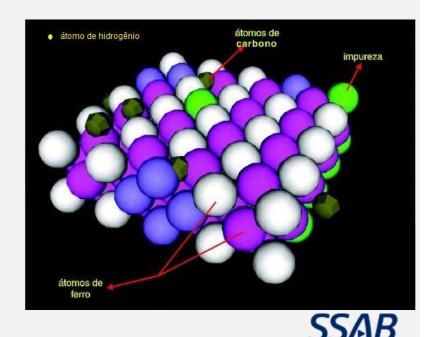
➤ Trincas por hidrógeno son trinques tardíos que aparecen después de la soldadura a temperaturas inferiores a 200ºC. Pueden aparecer en la ZTA o en el propio cordón de soldadura.
SSAB

Fisuras por Hidrogênio


Las fisuras por hidrógeno sólo pueden ocurrir cuando las tres condiciones siguientes están presentes al mismo tiempo en la junta soldada:


- Acero / consumible con un carbono equivalente relativamente alto
- Presencia de hidrógeno en exceso en la junta
- Tensiones elevadas en la junta soldada




Fisuras por Hidrogênio

- Utilizar las temperaturas de precalentamiento e interpaso recomendadas.
- Utilizar los consumibles con bajo nivel de hidrógeno.
- Mantener el área a ser soldada limpia

Soldadura – Consumibles

Ferríticos

CONSUMIBLES FERRÍTICOS NO ALEADOS Y CON BAJO CONTENIDO DE ALEACIÓN

Si se seleccionan consumibles ferríticos no aleados o con bajo contenido de aleación, el límite de elasticidad adecuado de estos consumibles es de aproximadamente 500 MPa. El contenido de hidrógeno máximo recomendado de los consumibles es de 5 ml/100 g de metal de soldadura. Los consumibles para soldadura MAG con electrodo sólido y para soldadura TIG, puede satisfacer este requisito. Para otros métodos de soldadura, los siguientes tipos de consumibles ofrecen la posibilidad de cumplir los criterios sobre hidrógeno establecidos:

- Soldadura MAG con electrodos de núcleo fundente: Electrodos básicos y de rutilo
- Soldadura MAG con electrodos de núcleo metálico: algunas marcas
- SAW: combinaciones de electrodos básicos de núcleo y metálico

En los tres últimos casos, los niveles exactos de hidrógeno se pueden consultar en la ficha técnica del consumible.

Austeníticos

CONSUMIBLES AUSTENÍTICOS

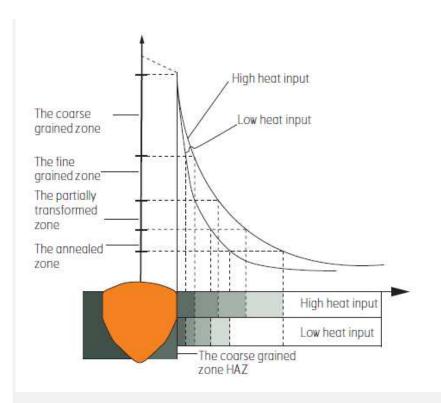
Los consumibles austeníticos recomendados son los conformes con AWS 307 o AWS 309. Recomendamos dar preferencia a los consumibles conformes con AWS 307 frente a los conformes con AWS 309. Estos tipos de consumibles ofrecen unos límites de elasticidad de hasta aproximadamente 500 MPa en todo el metal de soldadura. El tipo AWS 307 soporta mejor el agrietamiento

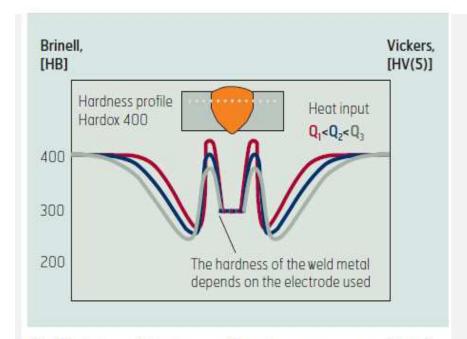
SSAB

Consumibles con bajo nivel de hidrogeno < 5ml/100g ou H5

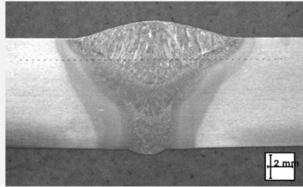
Aporte de Calor

- Major tenacidade
- Melhor resistência
- Redução da deformação
- Menores tensões residuais
- Menor ZTA




 Maior produtividade para métodos de soldagem convencionais

$Q = \frac{k \times U \times I \times 60}{v \times 1000}$
Q = Aporte de calor [kJ/mm] U = Tensão [V]
I = Corrente [A]
v = Velocidade de soldagem [mm/min] k = Rendimento térmico [sem dimensões]


k [sem dimensões]	
0.8	
0.8	
1.0	
0.6	В
	0.8 0.8 1.0

Zona Termicamente Afectada (ZTA)

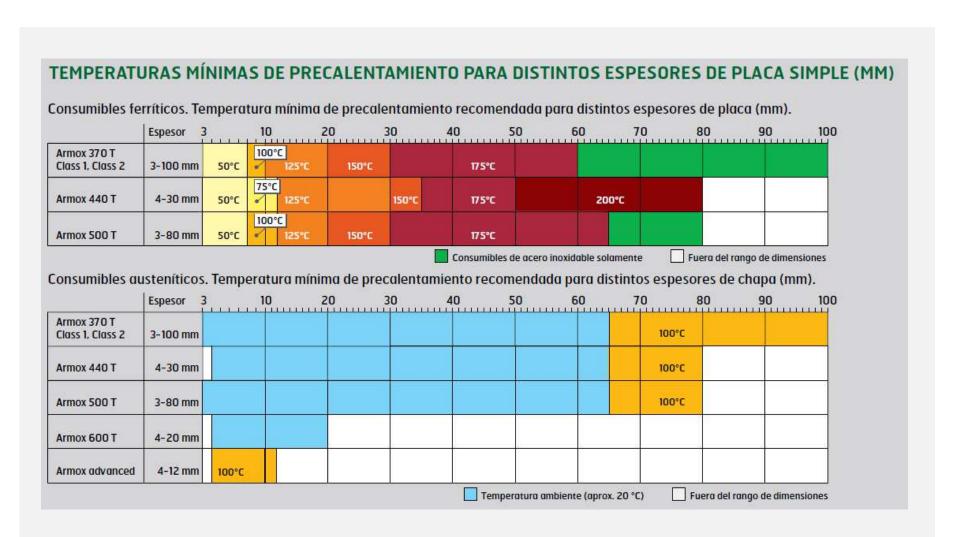
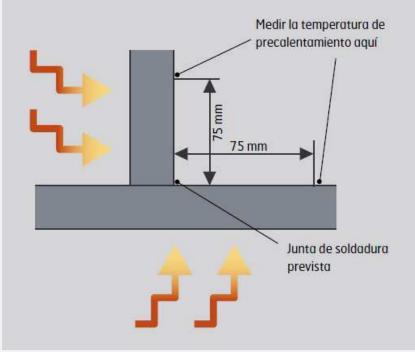
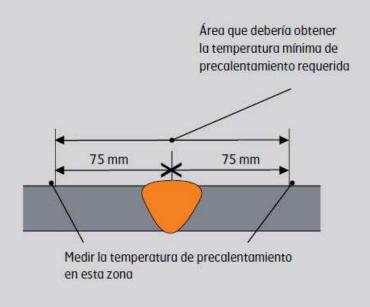


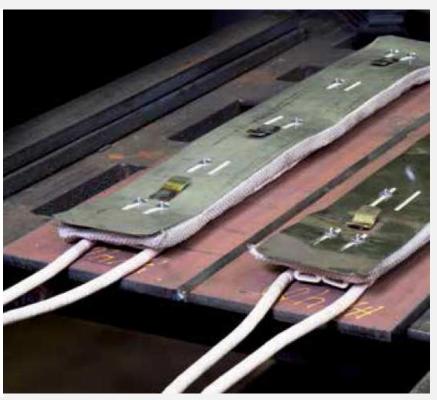
Fig. 5.6: Schematic hardness profile values transverse to a joint of Hardox 400 welded with different heat inputs.


Precalientamiento



Precalientamiento

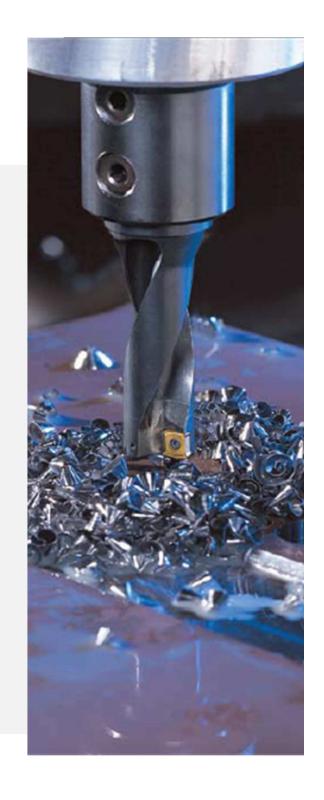
Medir la temperatura de la placa más gruesa de la junta. Espere un mínimo de 2 min/25 mm de grosor, antes de medir la temperatura de pre-calentamiento. La temperatura mínima de precalentamiento debe obtenerse en una zona de 75 +75 mm alrededor de la junta de soldadura prevista.



Temperatura de intrepasada

Temperaturas máximas recomendadas de precalentamiento/entre pasadas				
Armox 370 T Armox 370 T, clase 2	400°C			
Armox 440 T	200°C			
Armox 500 T	200°C			
Armox 600 T	180°C			
Armox Advance	150°C			

Primer


La soldadura se puede hacer directamente sobre el primer con resultados satisfactorios. Sin embargo, se puede quitar el primer para mejorar:

- Soldadura fuera de posición (vertical, sobre la cabeza, etc)
- □ Reducción del nivel de porosidad en la soldadura.

MECANIZADO

Mecanizado

Además de la dureza se puede fresar / taladrar / roscar todos los grados de Armox:

- -Requiere que la máquina sea robusta / utilizando las herramientas apropiadas
- Armox 550 y Armox 600 solamente utilizando herramientas de carburo (máquinas CNC)
- Recomendaciones para el mecanizado pueden obtenerse en www.ssab.com

FURACIÓN

Para perforar se recomienda usar brocas de acero de alta velocidad o brocas de carburo cementado. Para perforar Armox con brocas HSS empleando taladros de columna/radiales se recomienda usar brocas de acero aleado con cobalto (HSS-Co 8%) con un ángulo de espiral pequeño. Para practicar agujeros individuales se puede usar una broca HSS estándar

FURACIÓN

Cabezales de perforación intercambiables

	Armox 370T CL1 & CL2	Armox 440T	Armox 500T	Armox 600T
Velocidad de corte, V _c [m/min]	35–45	30-40	20-30	20-30
Velocidad de avance , f _n [mm/rev]	0.10-0.15	0.1-0.15	0.08-0.12	0.07-0.12

Tabla 7

Broca con elemento indexable

25	Armox 370T CL1 & CL2	Armox 440T	Armox 500T	Armox 600T
Velocidad de corte, V _c [m/min]	60-80	50-70	40-60	30-40
Velocidad de avance , f _n [mm/rev]	0.06-0.14	0.06-0.14	0.06-0.12	0.05-0.1

Tabla 8

RECOMENDACIONES PARA PERFORACÓN CUANDO EL ESTADO DE LA MÁQUINA ES ÓPTIMO

Broca de carburo cementado

	Armox 370T CL1 & CL2	Armox 440T	Armox 500T	Armox 600T	Armox Advance
Velocidad de corte V _C [m/min]	35-45	30-40	25–35	20-30	18-25
Velocidad de avance, f _n [mm/rev]	0.1-0.15	0.1-0.15	0.08-0.12	0.06-0.1	0,08-0,10

SSAB SSAB

Avellanado Cónico y Cilíndrico

AVELLANADO CÓNICO Y CILÍNDRICO

La mejor forma de llevar a cabo el avellanado cónico/cilíndrico es utilizar herramientas con elementos intercambiables. Utilice siempre una guía de piloto giratoria y refrigerante.

	Armox 370T CL1 & CL2	Armox 440T	Armox 500T	Armox 600T	
V _c [m/min]	25–70	20-50	17-50	12-40	
Velocidad de avance [mm/rev]	0.10-0.20	0.10-0.20	0.10-0.20	0.10-0.20	
D _c [mm]	Velocidad [RPM]				
19	420-1175	335-840	285-840	201-670	
24	330-930	265-665	225-665	151-531	
34	235–655	185-470	160-470	112-375	
42	190-530	150-380	130-380	91-303	
57	140-390	110-280	95-280	67-223	

Tabla 9 *Reduzca los datos de corte alrededor del 30% en el avellanado cónico

SSAB SSAB

Pretaladrado y Fresado de Roscas

PRETALADRADO/FRESADO DE ROSCAS

El uso de herramientas adecuadas permite realizar cualquier operación de pretaladrado/fresado de roscas en placas Armox de cualquier calidad. Se recomienda usar brocas de pretaladrado de 4 labios de corte que soporten los elevados pares de torsión que se generan durante el pretaladrado de los materiales duros. Si la resistencia no es un factor crítico, el agujero perforado puede ser un 3% mayor de lo normal, lo que prolongará la vida útil de la broca.

	Armox 370T CL1 & CL2	Armox 440T	Armox 500T				
V _c [m/min]	~ 5	- 3	~ 2.5				
D _c [mm]	Velocidad o	Velocidad de avance [mm/rev] y velocidad [RPM]					
M5	320	10	-				
M10	160	95	80				
M16	100	60	50				
M20	80	50	40				
M24	65	40	30				
M30	55	30	25				

Tabla 10 - El pretaladrado no es adecuado, por lo que recomendamos el fresado de la rosca.

FRESADO DE METAL DURO CEMENTADO

	Armox 370T CL1 & CL2	Armox 440T	Armox 500T	Armox 600T	Armox Advance
	Veloci	idad de corte Vc [m	n/min] y velocidad d	e avance [mm/rev]	
Vc	60-80	50-70	40-60	30-40	25-35
f _n	0.02-0.05	0.02-0.05	0.02-0.05	0.01-0.03	0.01-0.03

Table 11* Para gestionar el fresado de roscas, es necesaria una máquina de control numérico por computadora (CNC) y la rosca debe hacerse en 2 pasadas.

SSAB SSAB

Fresado

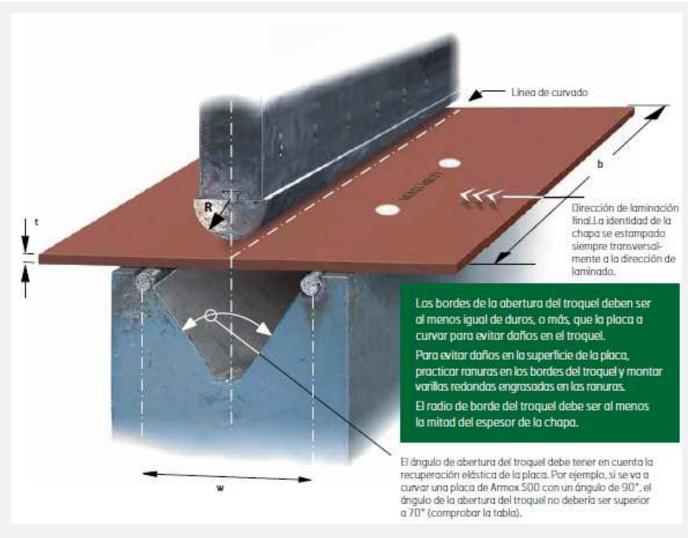
FRESADO

Para garantizar la producción en serie, se recomienda usar fresas con elementos de carburo cementado.

FRESADO PLANO					
Calidad	P30 / C6	P20-P30 / C6-C7			
Condiciones	average	stable			
Velocidad de avance [fz]	0.1-0.2-0.3	0.1-0.2			
١	/elocidad de corte, V _c [m/min]				
Armox 370T CL1 & CL2	150-120-110	150-120			
Armox 440T	150-120-110	150-120			
Armox 500T	120–100	120-100			
Armox 500T	120-100	120-100			
Armox 600T	#1	* 70-50			
Armox Advance	5)	* 50-35			

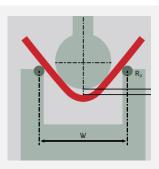
Tabla 12 * Velocidad de avance [fz] recomendada de 0,07-0,12.

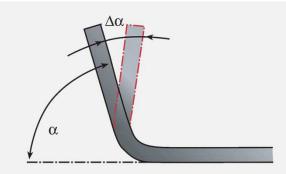
PLEGAMIENTO


Conformación

Además de la alta dureza se puede plegar / cilindrar en frío hasta el Armox 500

- -Es necesario que la máquina tienga fuerza suficiente
- -Observación de los radios mínimos del punzón y la abertura mínima del troquel.
- -Recomendaciones sobre conformación pueden obtenerse en www.ssab.com


Conformación - Plegamiento



Conformación - Plegamiento

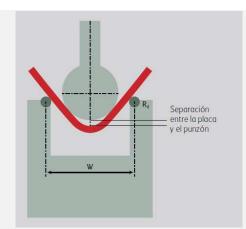

	Espesor [mm]	En ángulos rectos R/t	A lo largo R/t	En ángulos rectos W/t	A lo largo W/t	Recuperación elástica [°]	
Armox 370T CL1 & CL2	t<8 8-15 >-15	3.0 4.0 5.0	3.5 5.0 6.0	9 10 12	10.5 11 13	9–13	
Armox 440	t<8 8–15 »–15	4.0 4.0 4.5	4.0 4.0 5.0	10 10 12	10 12 14	11–18	
Armox 500T	t<8 8–15 >–15	4.0 4.0 5.5	4.0 4.0 6.0	10 12 16	12 14 18	12-20	
Armox 600T	Póngase en contacto SSAB						
Advance	Póngase en contacto SSAB						

Tabla 15 Radio mínimo de punzonado recomendado (R) y abertura del troquel (W) para espesor de placa (t) cuando la placa se dobla 90° en la dirección de laminado y en los ángulos adecuados en relación con la dirección de laminado, así como la recuperación elástica correspondiente.

Conformación - Plegamiento

$$P = \frac{b \cdot t^2 \cdot R_m}{(W-Rd-Rp) \cdot 9800}$$

P = Bend force, tons (metric)

t = Plate thickness, mm

W = Die width, mm (figure 1) b = Bend length, mm Rm = Tensile strength, MPa

Rd = Die entry radius, mm

Rp = Punch radius, mm

	Dureza [HBW]	Tensión de rotura R _m [MPa]	Elongación A _s [%]
S 355 acc to EN10025	180	550	28
Armox 370T CL1 & CL2	380-430	1200	11
Armox 440	420-480	1400	10
Armox 500T	480-540	1600	8
Armox 600T	570-640	2000	7
Armox Advance	58-63 HRC	>2000	>7

PREGUNTAS?

